“Multifunctional hooping for automobiles and/or outdoor screening material based on coated cotton-jute fabric”

Description of the product

The product is a cotton-jute fabric coated with a blend of chlorosulphonated polyethylene, chloroprene and polyvinyl alcohol employing a calendar coating technique and subsequently vulcanized using a typical sulphur curing system. The product is intended as a substitute for PVC-coated polyester, which is used as an outdoor material throughout the world.

By incorporating polyvinyl alcohol (PVA) at an appropriate dosage in the rubber blend, the fabric coating is made moisture vapour permeable. PVA acts as a conduit in the rubber matrix, promoting the transfer of moisture vapour by breaking and reforming hydrogen bonds with water molecules (Das. D, Ghosh. S, 2018). The resulting coated cotton-jute fabric may be used in canopies or awnings in view of its ability to transfer moisture while remaining waterproof and fire-retardant.

The natural textile product contains no PVC, no carcinogenic plasticizer, no toxic formaldehyde-based adhesion promoter, and no non-biodegradable products, unlike PVC-coated polyester (commonly known as Vinyl).

Property parameters of coated cotton-jute fabric for outdoor applications:

<table>
<thead>
<tr>
<th>Type of Property</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterproofness</td>
<td>1300 mm water column (Hydrostatic Head)</td>
</tr>
<tr>
<td>Moisture Vapour permeability</td>
<td>2240 g/m²/24 h (ASTM E 398)</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>383N/cm</td>
</tr>
<tr>
<td>Tear Strength</td>
<td>78 N</td>
</tr>
<tr>
<td>Weight</td>
<td>700-800 g/m²</td>
</tr>
<tr>
<td>Flame retardancy</td>
<td>Complies FMVSS302</td>
</tr>
<tr>
<td>Low temperature flexibility</td>
<td>(up to -40°C)</td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>Complies ASTM D3389</td>
</tr>
<tr>
<td>Coating adhesion</td>
<td>87 N/5 cm</td>
</tr>
<tr>
<td>Limiting oxygen index</td>
<td>34</td>
</tr>
<tr>
<td>Weather resistance</td>
<td>Retains 75% of strength, 80% of flame retardancy, 80% of breathability after having exposure in Weatherometer following AATCC TM 186</td>
</tr>
<tr>
<td>Antibacterial property</td>
<td>Shows antibacterial property against E. coli and S. aurus</td>
</tr>
</tbody>
</table>

Degree to which the innovation has been implemented or may be implemented:
The product and the production process are the result of research sponsored by the Ministry of Textiles, Government of India and implemented by the Department of Jute and Fibre Technology, University of Calcutta. MS. Ajanta Textiles, India, is the industrial partner who will be responsible for commercialization of the product after a technology transfer agreement is completed with the University of Calcutta.

MS. Ajanta may be contacted for additional information.

Level of innovation

The natural-fibre based material provides appreciable weather resistance and can serve as a bio-degradable substitute for non-biodegradable PVC-coated polyester. The cotton-jute blend is fire retardant, antibacterial and provides moisture vapour permeability. The material is cost effective and does not involve complicated, solvent-based technology.

Potential for developing new markets or uses for natural fibres.

The coated cotton-jute product will be appropriate for use as soft hooding in vehicles or as material for canopies and awnings. The development of this material will lead to increased use of natural fibres.

Reference


Contact information:

Dr. Debasish Das
Professor
University of Calcutta, Department of Jute and Fibre Technology, 35, Ballygunge Circular Road, Kolkata, India, 700019
E-Mail address: drdebasishdas@yahoo.co.in, deb17g1d@gmail.com
Phone: +91 9831331481

Dr. Subhas Ghosh
Professor
School of Visual Built Environments
College of Engineering and Technology
Eastern Michigan University
Ypsilanti, MI 48197
USA
sghosh@emich.edu
734-678-8119

MS. Ajanta Textiles, India
Website ajantatextiles.com
Email: ashishweaves@gmail.com